Thursday, January 30, 2020

Twin Towers Essay Example for Free

Twin Towers Essay When waking up in the morning we never know what the outcome of our day will look like, weather it’s the same routine of a daily basis. Never in a million years would we think that our workplace will become a place in where history would changed. We know that September 11, 2001 became a day that changed both this nation and the people. The real question here is, Did the fall of the Twin Towers mark the moment of terrorism in America; or have previous events been the calling to attack America? Over the years there have been significant terrorism attacks. By looking at pervious attacks it shows us how the changes in terrorism are carried out and shows the changes in how countries counter terrorist attacks. If we want to know that the Twin Towers where indeed the start of terrorism for America we should look at the history of terrorism, the methodology and the absence of unity America shows toward each other. Looking and studying about the history of terrorism towards the United States, we see that the first attack towards the Twin Towers was the bombing in 1993 that was placed in a truck in the garaged of the building. Reading the book 102 Minutes, we see the perspective of the people who were trapped in the towers, but it also gives us the information about the 1993 bombing. This book states, â€Å"The 1993 bombing marked it as an icon and target. † ( Dwyer and Flynn 21). Reading this we can see that the September 11 attack on the Twin Towers was not the first attempt ever made. In my opinion the bombing of 1993 was a warning to the United States saying, â€Å"Look what we are capable of doing to your country. † Their plan was to kill around two hundred fifty-thousand people with one bomb. Unfortunately the bomb killed six people but injuring thousands. This mishap did not stop terrorism against America; one the other hand it was opening a door for them. â€Å" From most perspectives, the 1993 bombing of the trade center, killing six people, had been a bleak moment, marking the arrival of terrorism to America† (Dwyer and Flynn 133). The history of terrorism has been nothing but hard work. It was like they never gave till they were happy with their actions. The question is are they ever happy with their actions, or do they want more destruction? To my understanding Bin Laden says that it is more important for Muslims to kill American people than any other activity. Another event in the history of terrorism attacks was the USS Cole Attack in 2000. It is to be known that this event was also under the control of Usama Bin Laden’s Al Qaeda networking; killing several Americans and injuring many. Seeing and knowing about the previous attacks Usama Bin Laden has been putting into action we can see that the Twin Tower collapse was not the moment that terrorism came to America. The Twin Tower attack was more of a statement saying, â€Å"Since you have not taken the 1993 bombing and USS Cole Attack into great consideration maybe hijacking planes and crashing them will open your eyes. † Throughout the past events we can see that Bin Laden put his life into planing these attacks with great passion. In the book The 9/11 Report, we read how the Al Qaeda prepared themselves for the horrific event and the studying they took in to know how to attack and when. â€Å"In the early summer of 2000, the Hamburg group arrived in the United States to begin flight training. All three of these men would be pilots on the 9/11 operation† (Jacobson and Colon 69). These hijackers studied everything they need to know in order to take action on that very day. From learning how to flight a pilot to using guns to to route these planes were to take on September 11. Not only did the terrorist gone under intense training and studying, but so did the United States. The Government and even researchers’ needed to know and understand the meaning behind the attacks. In the journal Intersecting Facts and Theories on 9/11 by Joseph P. Firmage, he mentions: â€Å"One of the challenges in comprehending the circumstances of 9/11 is the sheer volume of material spanning two decades that must be studied for one to become comfortable reaching the conclusions† (Firmage 19). Throughout his journal he talks about the subjects that were found in this research. How was it possible for terrorist to attack on America soil? His three possibly theories where that 1) the 19 Islamic radicals caught the U. S. off guard, 2) the Bush administration knew about the attacks and let them to happen, and 3) such officials architected the attacks and caused them to happened. Based on this information I agree with what the researcher has come up with because to be honest we all know that back before September 11, our security at airports was not as advanced and as great as today’s security. Back then we did no have the machine where one is to step in and it sees your body or detect the metal in your clothing. I honestly do not remember going through all that process when I was younger and would travel, but I cannot say the security did this and this because I was younger ,and did not pay attention to my surroundings. We do know that the government did have an understanding of the Twin Towers attack before occurring, yet they did not put mind to this situation. We know that inside the government there was lack of communication, but there was also lack in unity. The 9/11 Report book talks about many different subjects, but it also mentions the actions government took against the treats from Usama Bin Laden towards the Twin Towers. In this graphic adaptation is states how Richard Clarke wrote a memo to colleagues saying, â€Å"When these attacks occur, as they likely will, we will wonder what more we could have done to stop them† (Jacobson and Colon 79). This memo clearly tells us that our administration was well aware of Al Qaeda’s plans. If we look at the word â€Å"united† its most common definition is combined, connected. Now if we put these words in front of state United States means a state where administration is connected to its people; where we are one whole family and need to look out for one another. By not taking into great consideration the treats that United States received and not believing such horrific even could happen on the most â€Å"goddess† land in the world, our connection grew apart, because although many of us knew of previous attacks and government had a warning of an income one, we did not unite to fight for our land. I’m not saying we needed to start war, but by having better airport security back then and making it less easy for Muslims to have entered the United States, we would have been saying,â€Å"our gloves are on and we are ready to fight the war, if it means to keep our people safe. † Unity is something everyone has with someone. So why can’t our government keep their unity chain stronger and together as years pass. It seems that Al Qaeda in this case and in many other have had more unity then United States it self. The Al Qaeda knew what the plan was, knew which action they each had to take on that day. The Twin Tower attack was not the beginning of terrorist in America; terrorist were simply saying, â€Å"Look what we can do in your land. † The construction of the Freedom Tower to me signifies that we have not yet learned from our mistakes eleven years ago. We are calling for trouble because we want to show terrorist we are a land that can do anything and build a taller building then the ones they collapsed. United States has to learn that we are a state that is united in every way and grow stronger with each day that passes. Work Cited 1. Dwyer, Jim and Flynn, Kevin. 102 Minutes. New York: Henry Holt, 2005. Print. 2. Firmage, P. Joseph. â€Å"Intersecting Facts and Theories on 9/11. † (2006): 19. Print. 3. Jacobson, Sid and Colon, Erine. The 9/11 Report: A Graphic Adaptation. New York: Hill and Wang, 2006. Print.

Wednesday, January 22, 2020

The Bennets: Experts in the Field of Inter-Family Conflict Avoidance :: essays research papers

The Bennets: Experts in the Field of Inter-Family Conflict Avoidance   Ã‚  Ã‚  Ã‚  Ã‚  Father looks across the dinner table and kindly asks his darling wife to pass the dinner rolls while Suzie is lovingly telling about her second grade teacher’s neat handwriting. The linen tablecloth is firmly pressed and the home-cooked meal is thankfully devoured. The yellow-checkered dinner plates are freshly washed, and the smell of lilacs from the garden drifts through the sunlit dining room. Billy smiles at his mother as he asks her if he could please have some more of her â€Å"deliciously home grown asparagus.† Mother nods to Billy and passes him the serving dish. When the family has had their fill, Suzie volunteers to do the dishes and Billy habitually clears the table and brings each of his parents a glass of dessert wine. Mother and Father then proceed to enjoy their wine as they talk of Beethoven and Monet.   Ã‚  Ã‚  Ã‚  Ã‚  This is a family without conflicts. Everybody dreams of one, nobody has one. It is impossible, and makes for a very unrealistic, and also a very boring, story. An imperfect family can be used in literature in order to make fiction believable and often more relative to the reader. By showing a character’s flaws, the author can add texture and depth to a story. Jane Austen definitely uses this idea in her famous novel: Pride and Prejudice. Not one of her characters is perfect. These flaws add drama to the plot in the same way that dressing adds flavor to a salad. The weaknesses of one character often foil the strengths of another: Lydia’s goofy foolishness has the affect of bringing out the sense and patience of Jane and Elizabeth. Mr. Wickham’s false personality and immoral behavior toward the Bennets proves Mr. Darcy’s truthfulness and emphasizes his kind and thoughtful personality.   Ã‚  Ã‚  Ã‚  Ã‚  Although faults often bring out the best in literature, a psychologist would suggest that the Bennets need some severe family counseling. Mr. and Mrs. Bennet should never have been married; they contradict the idea that opposites attract. Mr. Bennet had married because he was â€Å"captivated by youth and beauty, and [the] appearance of good humour which youth and beauty generally give†¦Ã¢â‚¬  (201) He married for the wrong reasons and suffers the consequences of his choice. Mrs. Bennet is described as an ignorant woman with weak understanding and an illiberal mind. Mr. Bennet is unhappy with the relationship as soon as the physical attraction wears off.

Tuesday, January 14, 2020

Lab report

Repeatability measurements were taken on a bolt to get the total length, and also measuring the low rate of a faucet by measuring the amount of time it took to fill a beaker. To ensure a more accurate sample, twenty measurements of each section were obtained. For the batch measurement portion of this lab, a multi-meter was used to measure the resistance in a pack of ten resistors. Each member measured the resistors twice to allow for more precise statistical analysis.After all measurements were recorded, statistical analysis such as mean, standard deviation, and true mean range with 90%, 95%, and 99% confidence intervals were used to obtain the results. Once calculations were made, it was determined that there was error in this vibratory due to the environment and to human error, however all of the results fell within the ranges of confidence for each given section. Relevance In this experiment length, flow rate, and resistance was measured and the true mean was calculated. It was ob served that the true mean varied depending on the variation of the sample mean and sample standard deviation.It was shown that the population mean, or true mean, could not be found exactly, but could be estimated as a range with a certain level of confidence with the measurement of the sample mean and sample standard deviation. The knowledge practiced in this lab can be lawful in future experiments if say a company needs to estimate the population average with a specified level of confidence of a bolt that they only have a few samples of. Introduction There are multiple ways of measurement, as well as, many different types of ways to analyze raw data.In this lab the objective is to experiment with two different types of measurements, repeatability and batch measurements. Theoretically the bolt length plus the cap thickness (B+C) should be equal to the measured total length of the bolt(A). Taking multiple measurements done by multiple people until twenty samples re obtained measuring all four components of the bolt and obtaining the raw data of bolt measurements. By having multiple people take measurements a small amount of human error is removed in case one person didn't measure as accurate.By having multiple measurements done by each person a bigger sample size is obtained, and bigger sample size typically means more accurate results. After the measurements were made a sample mean was calculated, as well as, a sample standard deviation for all four components of the bolt. The sample mean and sample standard deviation were 2 lactated to estimate the true mean of the population with a level of confidence of 90 and 95 percent. Once the true mean of each component was estimated a comparison was made between the total length(A) and the sum of the cap thickness(S) and bolt length(C).In theory (B+C) should equal the total length of the bolt(A), as they represent the same length. Though they should be the same, they are not. The sum of measurements, (B) and (C) yield a much wider range of true mean than the measurement of (A). This difference is created by multiple types of error such as, human error, maybe reading the caliper wrong. Or error such as mechanical error, maybe the caliper itself was broken or not calibrated. In the second module of this lab the flow rate of the faucet water is measured using a stop watch and a mall beaker.Obtaining the flow rate of the water in 20 different samples, then summarizing the raw data into sample mean and sample standard deviation. With the sample mean and standard deviation, the true mean is to be estimated with a confidence level of 90 percent and then again with 95 percent. In the third module the measurements were made in batches. The measurements of batches of resistors were measured with a Center Multi-meter to make sure they all locked in at the same resistance. The resistors measured in this lab were quite strong, getting up to kick.Each group member measured the batch of resistors twice, then a pooled mean and pooled standard deviation was calculated. Pooling all the members samples together gives us one large sample and a more accurate estimate of the true mean. Using these calculated pooled mean and standard deviation the true mean was found as a range with a 99 percent level of confidence, and then again with a 95 percent level of confidence. The experimental setup and procedures are described in section The results of the experiments can be found n section {V} followed by conclusions in section {VI}.The appendix with the data chart can be found in section{Veil} Testing the repeatability of the measurements and taking the sample average and sample standard deviation to compare with each other, as well as, estimate the population mean and standard deviation. In three different modules linear dimension, flow rate, and resistance were measured. The primary objectives of this lab are to practice using devices that measure length and flow rate, to apply statistical principl es to raw data sets, and to become familiar with use off multi-meter. Formulas Used: Sample MeanStandard Deviation True Mean Range 3 Experiment: Equipment: Pittsburgh 6†³ Caliper Bolt Cent-Tech Digital Multi-meter CTD 10 pack of electrical resistors (gold, yellow, red, yellow) mall Beaker Digital Stopwatch Procedure: This experiment utilizes the billeted above. The experiment is broken down into three sections. First take the caliper and the bolt, calibrate the caliper to make sure that accurate measurements are collected. Measure the complete length of the bolt, thickness of the head, width of the threads and the length of the bolt to the base of the head.Repeat the measurement a total of twenty times split evenly between the roof members and record the results. Second, take a mall beaker and a stopwatch to the sink and turn the water faucet on to attain a constant flow rate of water. Use the stopwatch to measure the time it takes from the first drop of water entering the beak er to the instant the water begins to overflow from the top of the beaker. Empty the beaker of water repeat this measurement a total of twenty times split evenly between the group members and record the results. For the last portion of this lab, take a pack of resistors and the multi-meter.Set the millimeter to the appropriate reference resistance and begin measuring each of the sisters one at a 4 time. Each member will measure the set of resistors twice for a total of twenty resistance measurements per each member of the group. Record the measurements from each member and calculate the true mean resistance. Procedure Changes: The only change/ improvement made to the experiment was during the batch measurement section. It was found that more accurate readings of each resistor could be attained by taping the resistor pack to the table to keep it in place while using the probes to measure the resistance.This change will allow the group to move quicker through the experiment and not to make any mistakes such as possibly measuring the same resistor twice in a row. The experimental procedure is very straight forward and the group should not encounter any difficulties. Results/Discussion This lab required three different modules to be completed with two different types of measurements: batch and repeatability. The bolt measurement along with the volume flow rate were to be completed using repeatability, while the resistance module used batch measurements.The data was to be recorded and put into tables and analyzed using the mean, standard deviation, and true mean to determine whether the measurements were in the desired confidence intervals. 5 Linear Dimension Module: The first set of data was recorded using a manual caliper and a bolt. Four measurements were to be taken from the bolt: length, cap thickness, bolt length, and major diameter. These measurements lead to some error as expected, mostly human error and calibration of the manual calipers. There was also so me error due to the uneven sides of the bolt and the angle at which the calipers were held against the bolt.Table la. Shows the summarized data falls within the 95% Confidence Interval. Measurement Total Length (A) Cap Thickness (B) Bolt Length (C) Major Diameter (D) B+C Sample Mean (in. ) (in. ) 2. 2661 0. 0033 0. 2825 0. 0031 1 . 9791 0. 0262 . 30327 0. 0007 2. 2616 0. 0268 Table la. Statistics of Bolt Measurements (95%) [2. 265, 2. 267] [0. 2810, 0. 2839] [1. 967, 1. 991] [0. 3024, 0. 3030] [2. 249, 2. 274] The second part of the linear module was to compare the difference between the total length (A) and the sum of cap thickness and bolt length (B+C).The results show that there was a lower CLC with the total length measurement than with the addition of two parts. This is most likely because of the accuracy of two measurements has more mom for error from the angle of the calipers and human error. Table b. Shows the comparison of the two measurements. The full experimental data fo r the linear module is listed in Table A in the Appendix. Table b. Comparison of bolt statistics Flow Rate Module: Measurement of the flow rate from a sink using a stopwatch and beaker was the second of the repeatability measurements.This module produced the most error most likely from human error with stopping and starting of the stopwatch. The inconsistent flow from the sink also contributed to some of the error. The standard aviation in this experiment was high, but after 6 calculating the true mean range for a 90% and 95% confidence interval, the sample mean falls within both ranges with a few outliers. Table LLC. Shows the summary of the data. The full experimental data is listed in Table B in the Appendix . (ECMA/min) 5300. 95 CLC (ECMA/metro) 138. 835 [5247. 27, 5354. 3] Table LLC. Flow Rate Module Statistics 95% CLC (ECMA/metro) [5235. 97, 5365. 93] Resistance Module: In the final part of this lab, resistors were to be measured in batches from each of the group members. This section of the lab showed the most precision with the least error. From the color coded bands on the ten resistors, it was concluded that the value of the resistors was 470 sq. All of the results in table old. Show that the resistors were only reading 400 sq. All 60 recorded measurements were close to 400 ink which could be from mislabel resistors.The pooled mean of the three samples does fall within the 90% and 95% confidence intervals even with including some outliers in the data. The full experimental data can be found in Table C in the Appendix. Sample Mean (Q) 400. 033 99% (Q) 1. 588 [399. 02, 401. 05] Table old. Resistance Module Statistics 95% CLC (sq) [399. 29, 400. 78] Conclusion: This laboratory focused on repeatability measurements, batch measurements, and statistical concepts/ principles to analyze the collected data. This was achieved through the use of a caliper, stopwatch, and a digital multi-meter for measurement purposes.Using these tools, the group is able to meas ure length, flow rate, and resistance. The statistical concepts used in this lab were sample mean, standard deviation, true mean, and the range and level of confidence. The results of the linear dimension module prove that there is always going to be a small amount of human error when using devices such as a manual caliper. That error is relatively larger when trying to sum two measurements as compared to measuring a total length . The measurement of the bolt as a whole has a narrower CIA and true mean range of [2. 265, 2. 267].The 7 standard deviation for total length (A) [0. 0033 in. ] supports the theory that measuring the entire length at once is more accurate than summing the cap thickness (B) and bolt length (C) together, which is evident by analyzing the standard deviation of (B+C) [0. 0268 in. ]. The results of the flow rate module show that there is significantly far more human error when trying to measure the time it takes for water o fill a beaker. This can be attributed to response time of starting/stopping the stopwatch. The standard deviation [138. 835 /min] seems high, but calculations show that the sample mean [5300. 5 /min] falls within the true mean range for CLC [5247. 27, 5354. 63 /metro] and also for 95% CLC [5235. 97, 5365. 93 /min]. The results of the resistance module indicated a difference between the sample mean [400. 033 sq] of the batch measurements and the supposed value of the resistors [470 sq] according to the color coded bands. This was the most precise module with a standard deviation of [1. 588 sq] and all the pooled means fall within he 95% CLC with a true mean range of [399. 29, 400. 78 sq], and the 99% CLC with a range of [399. 02, 401. 05 sq].This laboratory experiment allowed the group to differentiate between repeatability measurements and batch measurements and apply the statistical theories learned in lecture to analyze the collected data. To minimize error percentage, calibrating the caliper before each measurement m ight be advantageous. Another advantage might be making markings on the bolt where each member of the group takes measurements instead of at random/different spots each time. Lab Report Lab Report 3 In this lab, we will take a trip to the planetarium lab and will learn about Right ascension and declination, and altitude and zenith. After looking at the different points shown, we will log the altitude and zenith in the chart in our lab manual. Now we will look at the same points and label the right ascension and declination. Then we will learn about the easiest way to locate the star Polaris. As we started the first program, we answered a few questions to make sure we knew the general idea of stars.Then we labeled the altitude and azimuth of five objects. Aldebran had a altitude of 54o and an azimuth of 203o. Betelgeuse had an altitude of 47o and an azimuth of 203o. Castor had an altitude of 62o and an azimuth 118o. Deneb had an altitude of 13o and an azimuth of 328o. Elnath had an altitude of 68o and an azimuth of 184o. After that, we looked at the right ascension and declination (RA and DEC). Aldebran had a RA of 4. 6 hours and a DEC of 16o. Elnath had an RA of 5. 3 hours and a DEC of 28o. Betelgeuse had an RA of 5. hours and a DEC of 8o. Castor had an RA of 7. 6 hours and a DEC of 32o. Deneb had an RA of 20. 7 hours and a DEC of 46o. Finally we looked at the Big Dipper and the Cassopia to find the star Polaris. This lab was super cool, I loved it. The planetarium was great way to learn more about the different constellations and stars in the sky. I never knew that Polaris was so close to the Big Dipper. Finding the all the right ascensions and declinations of the objects were fairly easy and felt like I learned to do it pretty easily now. Lab Report Example lab report of Synthesis of potassium tris (oxalato) ferrate (III) trihydrate Posted by  Nurul Yunaliyana Experiment 5: Synthesis of potassium tris (oxalato) ferrate (III) trihydrate Purpose: to synthesis potassium tris (oxalato) ferrate (III) trihydrate ,K3 [Fe (C2O4)3]. 3H2O. Introduction: Ferrous ammonium sulfate, Fe(NH4)2(SO4)2. 6H2O is dissolved in a slightly acid solution, excess oxalic acid, H2C2O4, is added and the following reaction takes place: Fe(NH4)2(SO4)2. 6H2O + H2C3O4 FeC2O4(s) + H2SO4 + (NH4)2SO4 + 6H2O FeC2O4 is finely divided precipitate and tends to be colloidal.However, heating the solution causes it to coagulate and facilitates separating the precipitate from the solution. Potassium oxalate is added to the FeC2O4 precipitate, which produces a slightly basic solution for the oxidation of the ferrous ion to the ferric ion, by hydroxide, H2O2. The following reaction takes place: H2O + HO2- +2Fe2+ 2Fe3+ + 3OH- The OH- ion concentration of the solution is hi gh enough so that some of the Fe3+ reacts with OH- to form ferric hydroxide(brown precipitate) as follows: Fe3+ + 3OH- Fe(OH)3 With the addition of more H2C2O4, the Fe(OH)3 dissolves and the soluble complex K3[fe(c2o4)3]. h20 is formed according to : 3k2C2O4 + 2Fe(OH)3 + 3H2C2O4 2K3[Fe(c2o4)3]. 3H20 + 3h2o Ethanol is added to the solution to cause the complex iron salt to precipitate. Data analysis and Discussion: In this experiment, I have studied how to synthesis coordination compound. Coordination compounds are formed when a neutral metal atom: Fe acting as a Lewis acid, reacts with some neutral molecules, acting as Lewis bases; or when a metallic cation, acting as a Lewis acid, reacts with any of a variety of organic or inorganic molecules, cations, or anions, acting as Lewis bases.These Lewis bases: C2O4 and H2O are called ligands. (Lewis acids are electron pair acceptors and Lewis bases are electron pair donors. Ferrous ammonium solution is added with oxalic acid dihydrate sol ution will form yellow solution with yellow precipitate. Fe(NH4)2(SO4)2. 6H2O + H2C3O4 FeC2O4(s) + H2SO4 + (NH4)2SO4 + 6H2O Then it is heated to boiling and the supernatant is decanted. As it is added with solid potassium oxalate, it is allowed to heat at 40 0 C and drop wise added with H2O2 and the solution turns to brown with precipitate for the oxidation of the ferrous ion to the ferric ion.H2O + HO2- +2Fe2+ 2Fe3+ + 3OH- Fe3+ + 3OH- Fe (OH) 3 Next, more oxalic acid dihydrate is added until the solution turns to colourless. 3k2C2O4 + 2Fe (OH) 3 + 3H2C2O4 2K3 [Fe (c2o4)3]. 3H20 + 3h2O The colourless solution is boiled then it turns to pale green solution. The solution is filtered then leaves for crystallization. After that, the green crystal is filtered and washed with 1:1 ethanol/ water and cooled acetone. The mass of bright (luminescent) green crystals is obtained which is 3. 2822 g. So, the percent yield of K3[Fe(C2O4)3]. H2O that I have obtained is 47. 72 %. The precautions tha t we must take are while heat the solution of ferrous ammonium sulfate and solution of oxalic acid dihydrate as it will bump. Next, beware of temperature (at least 40 0 C) of solution when add H2O2 into the solution. The next experiment is determination of the percentage of ligands in coordination compounds. Conclusion : I have studied how to synthesis coordination compound which is potassium tris (oxalato) ferrate (III) trihydrate ,K3 [Fe (C2O4)3]. H2O. The mass of bright (luminescent) green crystals is obtained which is 3. 2822 g. So, the percent yield of K3[Fe(C2O4)3]. 3H2O that I have obtained is 47. 72 %. Reference: 1. Hadariah Bahron, Kamariah Muda, S. Rohaiza S. Omar, Karimah Kassim (2011). Inorganic Chemistry. Experiments for Undergraduates, UPENA UiTM 2008. http://chem. science. oregonstate. edu/courses/ch221-3s/ch223s/2010_U_session_1/Report_Guideline_Green_Crystal_Sp_2010. pdf Lab Report Lab #7 Purpose: The purpose of this experiment is to analyze known solutions of Ba(NO3)2, Ca(NO3)2, Mg(NO3)2 and Sr(NO3)2 (alkaline earths) and known solutions of NaBr, NaCl and NaI (halogens). Then we are given an unknown solution to determine what ions are present. Materials: 1. Test tubes 2. Test tube holder 3. Pipet 4. 1 M H2SO4 5. 0. 1 M Na(NO3)2 6. 0. 1 M Ca(NO3)2 7. 1 M Na2CO3 8. 0. 25 M (NH4)2C2O4 9. 0. 1 M KIO3 10. Bromine water 11. Chlorine water 12. Iodine water 13. 0. 1 M NaCl 14. 0. 1 M NaBr 15. 0. 1 M NaI 16. Unknown (E) Methods:Alkaline Earths 1. Wash the test tubes of any residue 2. Add 12 drops of 1m H2SO4 to four test 3. Then add 12 drops of 0. 1m Ba(NO3)2 to one test tube containing 1M H2SO2 4. Add 12 drops of 0. 1m Ca(NO3)2 to another test tube containing 1M H2SO2 5. Add 12 drops of 0. 1m Mg(NO3)2 to another test tube containing 1M H2SO2 6. Add 12 drops of 0. 1m Sr(NO3)2 to the final test tube containing 1M H2SO2 7. Observe and take notes on the precipitate or the lack of precipitate in each reaction 8. Clean the test tubes after taking notes . Repeat the procedure, but now with 12 drops of 1m Na2CO3 in each test tube 10. Add 12 drops of 0. 1M Ca(NO3)2 to another test tube containing 1M Na2CO3 11. Add 12 drops of 0. 1M Mg(NO3)2 to another test tube containing 1M Na2CO3 12. Add 12 drops of 0. 1M Sr(NO3)2 to the final test tube containing 1M Na2CO3 13. Observe and take notes on the precipitate or the lack of precipitate in each reaction 14. Clean the test tubes after taking the notes 15. Repeat the process with 12 drops of 0. 25M (NH4)2C2O4 16.Observe and take notes on the precipitate or the lack of precipitate in each reaction 17. Clean the test tubes after taking the notes 18. Repeat the process with 12 drops of 0. 1M KIO3 19. Observe and take notes on the precipitate or the lack of precipitate in each reaction 20. Clean the test tubes after taking the notes 21. Repeat the process with 12 drops of unknown (E) 22. Observe and take notes on th e precipitate or the lack of precipitate in each reaction and deduct if it’s Ba(NO3)2, Ca(NO3)2, Mg(NO3)2 or Sr(NO3)2. 23. Clean the test tubes after taking the notesHalogens 1. Place a few drops of bromine water into the test tube and add 12 drops of heptane and shake 2. Repeat the process with chlorine water and iodine water and note any color changes in each 3. Clean the test tubes after taking the notes 4. Get three test tubes and add 12 drops of bromine water to each test tube with 12 drops of HEP 5. Add 12 drops of 0. 1M NaCl to the first test tube, 12 drops of 0. 1M NaBr to the second test tube and 12 drops of 0. 1M NaI to the third test tube 6. Note the color of each reaction 7. Clean the test tubes after taking the notes . Repeat the steps but with 12 drops of chlorine water in each test tube with 12 drops of HEP 9. Observe the color of each reaction 10. Clean the test tubes after taking the notes 11. Repeat the steps but with 12 drops of iodine water in each test tu be with 12 drops of HEP 12. Observe the color of each reaction 13. Clean the test tubes after taking the notes 14. Repeat the steps but with 12 drops of unknown (E) in each test tube with 12 drops of HEP 15. Observe the color of each reaction and deduct if the unknown is either NaBr, NaCl or NaI Results:Alkaline | H2SO4| Na2CO3| (NH4)2C2O4| KIO3| Ba(NO3)2| Cloudy white| Very cloudy white| White precipitate sits on bottom| Tiny amounts of white precipitate| Ca(NO3)2| No reaction | Cloudy white| Cloudy white precipitate| No reaction| Mg(NO3)2| No reaction| White film on top| No reaction | No reaction| Sr(NO3)2| White precipitate on top| White cloudy solution with some white precipitate| Faint white cloudy foggy precipitate| Little amounts of tiny white precipitate| Unknown (E) | No reaction | White film on top| No reaction| No reaction| .Unknown Alkaline Earth: Mg(NO3)2 Reaction between Halogens and Halides | NaBr| NaCl| NaI| Unknown (E)| Bromine water| Light faint yellow| Golden yell ow| Faint yellow tint| Light faint yellow| Chlorine water| Dark yellow amber | Colorless| Light yellow| Dark yellow amber| Iodine water| Light yellow tint| Dark red color| Light yellow| Light yellow tint| Unknown Halogen: NaBr Color of Halogens in solution | Br2| Cl2| I2| Water| Orangey-Brown| Colorless| Brown| HEP| Orange| Colorless| Purple | Conclusion: Lab Report In order to determine the relationship between coffee consumption and two types of vital signs, respiration rate and blood pressure, my group (Group 4) designed a lab that measured the respiration rate and blood pressure of two participants, once after consuming water and then again after consuming coffee. After testing two participants blood pressure and respiration rate, it was found that the vital signs of the participants remained the same after consuming water but decreased slightly after consuming coffee.This lab is significant because it demonstrates that the consumption of coffee, on the contrary to Group 4’s hypothesis, caused a decrease in the vital sign measurements of the two participants rather than increasing as we initially hypothesized. This lab was done to determine and compare the effects that coffee drinking has on blood pressure and the respiration rate in two participants.The hypothesis configured by our group was that after drinking 1 cup of water the par ticipant’s blood pressure and respiration rate would remain constant, but after the drinking 1cup of coffee the participants blood pressure and respiration rate would increase as a result of the common compounds found in coffee. The control in this experiment is 1 cup of water, because the participant’s blood pressure and respiration rate are being measured, but they have not been exposed to the common compounds found in coffee.The dependent variable in the study is the participant’s blood pressure and respiration rate because the vital signs are the component in the experiment that are being measured. The independent variable is what is changed in the experiment and in this experiment that would be the amount of the common compounds the participants consume in 1 cup of coffee. The results of our lab disproved our hypothesis, that consuming coffee would increase the participant’s blood pressure and respiration rate, as seen in Table 1, Graph 1, and Graph 2.Although our expectations of the measurement of vital signs after consuming 1 cup of water were correct, we had expected the results from the measurement of both the respiration rate and the blood pressure to noticeably increase after consuming coffee due to the common compounds found in coffee. The lab, actually, resulted in the decrease of respiration rate and blood pressure after the consumption of coffee.The study preformed by the National Cancer Institute measured the association between coffee and its affects on health, as a result of reading this article I conducted a study that worked off the same principle. However, in the lab I attempted to narrow the causal relationship between the two by measuring the participant’s vital signs, respiration rate and blood pressure, in relationship to consuming coffee versus water and any potential periods or repeated periods of evaluated or descended vital signs has to the longevity of one’s life.The results of the lab sup port the findings of the National Cancer Institute because the article states that consuming coffee has positive affects on health and our lab concluded that coffee consumption lowers blood pressure, which is necessary for a person that may struggle with high blood pressure to become healthy. During the lab, the participants physiology, blood pressure and respiration rate, was lowered after consuming coffee, this served to calm the participant’s vital signs. To improve the validity of the study a few changes could be made to improve the results.For example, I believe that the vital signs were not effected greatly because of the time span used to complete the study, after drinking the coffee we immediately took the vital signs instead of waiting for the full effect to take place. An additional reason for the higher levels of the vital signs before the consumption of coffee could have been due to activities done prior to the lab thus increasing the vital sings measured after dr inking water. To improve upon these imperfections, the study could be done earlier in the day and with more resting periods before vital signs are taken.This lab was designed to determine the relationship between coffee consumption and two types of vital signs, respiration and blood pressure. The lab measured the respiration rate and blood pressure of two participants, once after consuming water and then again after consuming coffee. I hypothesized that the consumption of coffee would dramatically increase the participant’s respiration rate and blood pressure due to the consumption of the common compounds found in coffee that typically raise energy levels and alertness.However, the lab resulted in slightly lower respiration rates and blood pressure after the consumption of coffee than water as seen in Table 1, Graph 1, and Graph 2. The lab is significant because it demonstrates that the consumption of coffee, in contrast to our hypothesis, caused a decrease in the vital sign measurements of the two participants rather than increasing as we originally hypothesized. Works Cited National Institues of Health. â€Å"Coffee drinkers have lower risk of death, study suggests. † ScienceDaily, 19 May 2012. Web. 9 Oct. 2012 Lab report Repeatability measurements were taken on a bolt to get the total length, and also measuring the low rate of a faucet by measuring the amount of time it took to fill a beaker. To ensure a more accurate sample, twenty measurements of each section were obtained. For the batch measurement portion of this lab, a multi-meter was used to measure the resistance in a pack of ten resistors. Each member measured the resistors twice to allow for more precise statistical analysis.After all measurements were recorded, statistical analysis such as mean, standard deviation, and true mean range with 90%, 95%, and 99% confidence intervals were used to obtain the results. Once calculations were made, it was determined that there was error in this vibratory due to the environment and to human error, however all of the results fell within the ranges of confidence for each given section. Relevance In this experiment length, flow rate, and resistance was measured and the true mean was calculated. It was ob served that the true mean varied depending on the variation of the sample mean and sample standard deviation.It was shown that the population mean, or true mean, could not be found exactly, but could be estimated as a range with a certain level of confidence with the measurement of the sample mean and sample standard deviation. The knowledge practiced in this lab can be lawful in future experiments if say a company needs to estimate the population average with a specified level of confidence of a bolt that they only have a few samples of. Introduction There are multiple ways of measurement, as well as, many different types of ways to analyze raw data.In this lab the objective is to experiment with two different types of measurements, repeatability and batch measurements. Theoretically the bolt length plus the cap thickness (B+C) should be equal to the measured total length of the bolt(A). Taking multiple measurements done by multiple people until twenty samples re obtained measuring all four components of the bolt and obtaining the raw data of bolt measurements. By having multiple people take measurements a small amount of human error is removed in case one person didn't measure as accurate.By having multiple measurements done by each person a bigger sample size is obtained, and bigger sample size typically means more accurate results. After the measurements were made a sample mean was calculated, as well as, a sample standard deviation for all four components of the bolt. The sample mean and sample standard deviation were 2 lactated to estimate the true mean of the population with a level of confidence of 90 and 95 percent. Once the true mean of each component was estimated a comparison was made between the total length(A) and the sum of the cap thickness(S) and bolt length(C).In theory (B+C) should equal the total length of the bolt(A), as they represent the same length. Though they should be the same, they are not. The sum of measurements, (B) and (C) yield a much wider range of true mean than the measurement of (A). This difference is created by multiple types of error such as, human error, maybe reading the caliper wrong. Or error such as mechanical error, maybe the caliper itself was broken or not calibrated. In the second module of this lab the flow rate of the faucet water is measured using a stop watch and a mall beaker.Obtaining the flow rate of the water in 20 different samples, then summarizing the raw data into sample mean and sample standard deviation. With the sample mean and standard deviation, the true mean is to be estimated with a confidence level of 90 percent and then again with 95 percent. In the third module the measurements were made in batches. The measurements of batches of resistors were measured with a Center Multi-meter to make sure they all locked in at the same resistance. The resistors measured in this lab were quite strong, getting up to kick.Each group member measured the batch of resistors twice, then a pooled mean and pooled standard deviation was calculated. Pooling all the members samples together gives us one large sample and a more accurate estimate of the true mean. Using these calculated pooled mean and standard deviation the true mean was found as a range with a 99 percent level of confidence, and then again with a 95 percent level of confidence. The experimental setup and procedures are described in section The results of the experiments can be found n section {V} followed by conclusions in section {VI}.The appendix with the data chart can be found in section{Veil} Testing the repeatability of the measurements and taking the sample average and sample standard deviation to compare with each other, as well as, estimate the population mean and standard deviation. In three different modules linear dimension, flow rate, and resistance were measured. The primary objectives of this lab are to practice using devices that measure length and flow rate, to apply statistical principl es to raw data sets, and to become familiar with use off multi-meter. Formulas Used: Sample MeanStandard Deviation True Mean Range 3 Experiment: Equipment: Pittsburgh 6†³ Caliper Bolt Cent-Tech Digital Multi-meter CTD 10 pack of electrical resistors (gold, yellow, red, yellow) mall Beaker Digital Stopwatch Procedure: This experiment utilizes the billeted above. The experiment is broken down into three sections. First take the caliper and the bolt, calibrate the caliper to make sure that accurate measurements are collected. Measure the complete length of the bolt, thickness of the head, width of the threads and the length of the bolt to the base of the head.Repeat the measurement a total of twenty times split evenly between the roof members and record the results. Second, take a mall beaker and a stopwatch to the sink and turn the water faucet on to attain a constant flow rate of water. Use the stopwatch to measure the time it takes from the first drop of water entering the beak er to the instant the water begins to overflow from the top of the beaker. Empty the beaker of water repeat this measurement a total of twenty times split evenly between the group members and record the results. For the last portion of this lab, take a pack of resistors and the multi-meter.Set the millimeter to the appropriate reference resistance and begin measuring each of the sisters one at a 4 time. Each member will measure the set of resistors twice for a total of twenty resistance measurements per each member of the group. Record the measurements from each member and calculate the true mean resistance. Procedure Changes: The only change/ improvement made to the experiment was during the batch measurement section. It was found that more accurate readings of each resistor could be attained by taping the resistor pack to the table to keep it in place while using the probes to measure the resistance.This change will allow the group to move quicker through the experiment and not to make any mistakes such as possibly measuring the same resistor twice in a row. The experimental procedure is very straight forward and the group should not encounter any difficulties. Results/Discussion This lab required three different modules to be completed with two different types of measurements: batch and repeatability. The bolt measurement along with the volume flow rate were to be completed using repeatability, while the resistance module used batch measurements.The data was to be recorded and put into tables and analyzed using the mean, standard deviation, and true mean to determine whether the measurements were in the desired confidence intervals. 5 Linear Dimension Module: The first set of data was recorded using a manual caliper and a bolt. Four measurements were to be taken from the bolt: length, cap thickness, bolt length, and major diameter. These measurements lead to some error as expected, mostly human error and calibration of the manual calipers. There was also so me error due to the uneven sides of the bolt and the angle at which the calipers were held against the bolt.Table la. Shows the summarized data falls within the 95% Confidence Interval. Measurement Total Length (A) Cap Thickness (B) Bolt Length (C) Major Diameter (D) B+C Sample Mean (in. ) (in. ) 2. 2661 0. 0033 0. 2825 0. 0031 1 . 9791 0. 0262 . 30327 0. 0007 2. 2616 0. 0268 Table la. Statistics of Bolt Measurements (95%) [2. 265, 2. 267] [0. 2810, 0. 2839] [1. 967, 1. 991] [0. 3024, 0. 3030] [2. 249, 2. 274] The second part of the linear module was to compare the difference between the total length (A) and the sum of cap thickness and bolt length (B+C).The results show that there was a lower CLC with the total length measurement than with the addition of two parts. This is most likely because of the accuracy of two measurements has more mom for error from the angle of the calipers and human error. Table b. Shows the comparison of the two measurements. The full experimental data fo r the linear module is listed in Table A in the Appendix. Table b. Comparison of bolt statistics Flow Rate Module: Measurement of the flow rate from a sink using a stopwatch and beaker was the second of the repeatability measurements.This module produced the most error most likely from human error with stopping and starting of the stopwatch. The inconsistent flow from the sink also contributed to some of the error. The standard aviation in this experiment was high, but after 6 calculating the true mean range for a 90% and 95% confidence interval, the sample mean falls within both ranges with a few outliers. Table LLC. Shows the summary of the data. The full experimental data is listed in Table B in the Appendix . (ECMA/min) 5300. 95 CLC (ECMA/metro) 138. 835 [5247. 27, 5354. 3] Table LLC. Flow Rate Module Statistics 95% CLC (ECMA/metro) [5235. 97, 5365. 93] Resistance Module: In the final part of this lab, resistors were to be measured in batches from each of the group members. This section of the lab showed the most precision with the least error. From the color coded bands on the ten resistors, it was concluded that the value of the resistors was 470 sq. All of the results in table old. Show that the resistors were only reading 400 sq. All 60 recorded measurements were close to 400 ink which could be from mislabel resistors.The pooled mean of the three samples does fall within the 90% and 95% confidence intervals even with including some outliers in the data. The full experimental data can be found in Table C in the Appendix. Sample Mean (Q) 400. 033 99% (Q) 1. 588 [399. 02, 401. 05] Table old. Resistance Module Statistics 95% CLC (sq) [399. 29, 400. 78] Conclusion: This laboratory focused on repeatability measurements, batch measurements, and statistical concepts/ principles to analyze the collected data. This was achieved through the use of a caliper, stopwatch, and a digital multi-meter for measurement purposes.Using these tools, the group is able to meas ure length, flow rate, and resistance. The statistical concepts used in this lab were sample mean, standard deviation, true mean, and the range and level of confidence. The results of the linear dimension module prove that there is always going to be a small amount of human error when using devices such as a manual caliper. That error is relatively larger when trying to sum two measurements as compared to measuring a total length . The measurement of the bolt as a whole has a narrower CIA and true mean range of [2. 265, 2. 267].The 7 standard deviation for total length (A) [0. 0033 in. ] supports the theory that measuring the entire length at once is more accurate than summing the cap thickness (B) and bolt length (C) together, which is evident by analyzing the standard deviation of (B+C) [0. 0268 in. ]. The results of the flow rate module show that there is significantly far more human error when trying to measure the time it takes for water o fill a beaker. This can be attributed to response time of starting/stopping the stopwatch. The standard deviation [138. 835 /min] seems high, but calculations show that the sample mean [5300. 5 /min] falls within the true mean range for CLC [5247. 27, 5354. 63 /metro] and also for 95% CLC [5235. 97, 5365. 93 /min]. The results of the resistance module indicated a difference between the sample mean [400. 033 sq] of the batch measurements and the supposed value of the resistors [470 sq] according to the color coded bands. This was the most precise module with a standard deviation of [1. 588 sq] and all the pooled means fall within he 95% CLC with a true mean range of [399. 29, 400. 78 sq], and the 99% CLC with a range of [399. 02, 401. 05 sq].This laboratory experiment allowed the group to differentiate between repeatability measurements and batch measurements and apply the statistical theories learned in lecture to analyze the collected data. To minimize error percentage, calibrating the caliper before each measurement m ight be advantageous. Another advantage might be making markings on the bolt where each member of the group takes measurements instead of at random/different spots each time. Lab Report Lab Report 3 In this lab, we will take a trip to the planetarium lab and will learn about Right ascension and declination, and altitude and zenith. After looking at the different points shown, we will log the altitude and zenith in the chart in our lab manual. Now we will look at the same points and label the right ascension and declination. Then we will learn about the easiest way to locate the star Polaris. As we started the first program, we answered a few questions to make sure we knew the general idea of stars.Then we labeled the altitude and azimuth of five objects. Aldebran had a altitude of 54o and an azimuth of 203o. Betelgeuse had an altitude of 47o and an azimuth of 203o. Castor had an altitude of 62o and an azimuth 118o. Deneb had an altitude of 13o and an azimuth of 328o. Elnath had an altitude of 68o and an azimuth of 184o. After that, we looked at the right ascension and declination (RA and DEC). Aldebran had a RA of 4. 6 hours and a DEC of 16o. Elnath had an RA of 5. 3 hours and a DEC of 28o. Betelgeuse had an RA of 5. hours and a DEC of 8o. Castor had an RA of 7. 6 hours and a DEC of 32o. Deneb had an RA of 20. 7 hours and a DEC of 46o. Finally we looked at the Big Dipper and the Cassopia to find the star Polaris. This lab was super cool, I loved it. The planetarium was great way to learn more about the different constellations and stars in the sky. I never knew that Polaris was so close to the Big Dipper. Finding the all the right ascensions and declinations of the objects were fairly easy and felt like I learned to do it pretty easily now. Lab Report Example lab report of Synthesis of potassium tris (oxalato) ferrate (III) trihydrate Posted by  Nurul Yunaliyana Experiment 5: Synthesis of potassium tris (oxalato) ferrate (III) trihydrate Purpose: to synthesis potassium tris (oxalato) ferrate (III) trihydrate ,K3 [Fe (C2O4)3]. 3H2O. Introduction: Ferrous ammonium sulfate, Fe(NH4)2(SO4)2. 6H2O is dissolved in a slightly acid solution, excess oxalic acid, H2C2O4, is added and the following reaction takes place: Fe(NH4)2(SO4)2. 6H2O + H2C3O4 FeC2O4(s) + H2SO4 + (NH4)2SO4 + 6H2O FeC2O4 is finely divided precipitate and tends to be colloidal.However, heating the solution causes it to coagulate and facilitates separating the precipitate from the solution. Potassium oxalate is added to the FeC2O4 precipitate, which produces a slightly basic solution for the oxidation of the ferrous ion to the ferric ion, by hydroxide, H2O2. The following reaction takes place: H2O + HO2- +2Fe2+ 2Fe3+ + 3OH- The OH- ion concentration of the solution is hi gh enough so that some of the Fe3+ reacts with OH- to form ferric hydroxide(brown precipitate) as follows: Fe3+ + 3OH- Fe(OH)3 With the addition of more H2C2O4, the Fe(OH)3 dissolves and the soluble complex K3[fe(c2o4)3]. h20 is formed according to : 3k2C2O4 + 2Fe(OH)3 + 3H2C2O4 2K3[Fe(c2o4)3]. 3H20 + 3h2o Ethanol is added to the solution to cause the complex iron salt to precipitate. Data analysis and Discussion: In this experiment, I have studied how to synthesis coordination compound. Coordination compounds are formed when a neutral metal atom: Fe acting as a Lewis acid, reacts with some neutral molecules, acting as Lewis bases; or when a metallic cation, acting as a Lewis acid, reacts with any of a variety of organic or inorganic molecules, cations, or anions, acting as Lewis bases.These Lewis bases: C2O4 and H2O are called ligands. (Lewis acids are electron pair acceptors and Lewis bases are electron pair donors. Ferrous ammonium solution is added with oxalic acid dihydrate sol ution will form yellow solution with yellow precipitate. Fe(NH4)2(SO4)2. 6H2O + H2C3O4 FeC2O4(s) + H2SO4 + (NH4)2SO4 + 6H2O Then it is heated to boiling and the supernatant is decanted. As it is added with solid potassium oxalate, it is allowed to heat at 40 0 C and drop wise added with H2O2 and the solution turns to brown with precipitate for the oxidation of the ferrous ion to the ferric ion.H2O + HO2- +2Fe2+ 2Fe3+ + 3OH- Fe3+ + 3OH- Fe (OH) 3 Next, more oxalic acid dihydrate is added until the solution turns to colourless. 3k2C2O4 + 2Fe (OH) 3 + 3H2C2O4 2K3 [Fe (c2o4)3]. 3H20 + 3h2O The colourless solution is boiled then it turns to pale green solution. The solution is filtered then leaves for crystallization. After that, the green crystal is filtered and washed with 1:1 ethanol/ water and cooled acetone. The mass of bright (luminescent) green crystals is obtained which is 3. 2822 g. So, the percent yield of K3[Fe(C2O4)3]. H2O that I have obtained is 47. 72 %. The precautions tha t we must take are while heat the solution of ferrous ammonium sulfate and solution of oxalic acid dihydrate as it will bump. Next, beware of temperature (at least 40 0 C) of solution when add H2O2 into the solution. The next experiment is determination of the percentage of ligands in coordination compounds. Conclusion : I have studied how to synthesis coordination compound which is potassium tris (oxalato) ferrate (III) trihydrate ,K3 [Fe (C2O4)3]. H2O. The mass of bright (luminescent) green crystals is obtained which is 3. 2822 g. So, the percent yield of K3[Fe(C2O4)3]. 3H2O that I have obtained is 47. 72 %. Reference: 1. Hadariah Bahron, Kamariah Muda, S. Rohaiza S. Omar, Karimah Kassim (2011). Inorganic Chemistry. Experiments for Undergraduates, UPENA UiTM 2008. http://chem. science. oregonstate. edu/courses/ch221-3s/ch223s/2010_U_session_1/Report_Guideline_Green_Crystal_Sp_2010. pdf Lab Report Lab #7 Purpose: The purpose of this experiment is to analyze known solutions of Ba(NO3)2, Ca(NO3)2, Mg(NO3)2 and Sr(NO3)2 (alkaline earths) and known solutions of NaBr, NaCl and NaI (halogens). Then we are given an unknown solution to determine what ions are present. Materials: 1. Test tubes 2. Test tube holder 3. Pipet 4. 1 M H2SO4 5. 0. 1 M Na(NO3)2 6. 0. 1 M Ca(NO3)2 7. 1 M Na2CO3 8. 0. 25 M (NH4)2C2O4 9. 0. 1 M KIO3 10. Bromine water 11. Chlorine water 12. Iodine water 13. 0. 1 M NaCl 14. 0. 1 M NaBr 15. 0. 1 M NaI 16. Unknown (E) Methods:Alkaline Earths 1. Wash the test tubes of any residue 2. Add 12 drops of 1m H2SO4 to four test 3. Then add 12 drops of 0. 1m Ba(NO3)2 to one test tube containing 1M H2SO2 4. Add 12 drops of 0. 1m Ca(NO3)2 to another test tube containing 1M H2SO2 5. Add 12 drops of 0. 1m Mg(NO3)2 to another test tube containing 1M H2SO2 6. Add 12 drops of 0. 1m Sr(NO3)2 to the final test tube containing 1M H2SO2 7. Observe and take notes on the precipitate or the lack of precipitate in each reaction 8. Clean the test tubes after taking notes . Repeat the procedure, but now with 12 drops of 1m Na2CO3 in each test tube 10. Add 12 drops of 0. 1M Ca(NO3)2 to another test tube containing 1M Na2CO3 11. Add 12 drops of 0. 1M Mg(NO3)2 to another test tube containing 1M Na2CO3 12. Add 12 drops of 0. 1M Sr(NO3)2 to the final test tube containing 1M Na2CO3 13. Observe and take notes on the precipitate or the lack of precipitate in each reaction 14. Clean the test tubes after taking the notes 15. Repeat the process with 12 drops of 0. 25M (NH4)2C2O4 16.Observe and take notes on the precipitate or the lack of precipitate in each reaction 17. Clean the test tubes after taking the notes 18. Repeat the process with 12 drops of 0. 1M KIO3 19. Observe and take notes on the precipitate or the lack of precipitate in each reaction 20. Clean the test tubes after taking the notes 21. Repeat the process with 12 drops of unknown (E) 22. Observe and take notes on th e precipitate or the lack of precipitate in each reaction and deduct if it’s Ba(NO3)2, Ca(NO3)2, Mg(NO3)2 or Sr(NO3)2. 23. Clean the test tubes after taking the notesHalogens 1. Place a few drops of bromine water into the test tube and add 12 drops of heptane and shake 2. Repeat the process with chlorine water and iodine water and note any color changes in each 3. Clean the test tubes after taking the notes 4. Get three test tubes and add 12 drops of bromine water to each test tube with 12 drops of HEP 5. Add 12 drops of 0. 1M NaCl to the first test tube, 12 drops of 0. 1M NaBr to the second test tube and 12 drops of 0. 1M NaI to the third test tube 6. Note the color of each reaction 7. Clean the test tubes after taking the notes . Repeat the steps but with 12 drops of chlorine water in each test tube with 12 drops of HEP 9. Observe the color of each reaction 10. Clean the test tubes after taking the notes 11. Repeat the steps but with 12 drops of iodine water in each test tu be with 12 drops of HEP 12. Observe the color of each reaction 13. Clean the test tubes after taking the notes 14. Repeat the steps but with 12 drops of unknown (E) in each test tube with 12 drops of HEP 15. Observe the color of each reaction and deduct if the unknown is either NaBr, NaCl or NaI Results:Alkaline | H2SO4| Na2CO3| (NH4)2C2O4| KIO3| Ba(NO3)2| Cloudy white| Very cloudy white| White precipitate sits on bottom| Tiny amounts of white precipitate| Ca(NO3)2| No reaction | Cloudy white| Cloudy white precipitate| No reaction| Mg(NO3)2| No reaction| White film on top| No reaction | No reaction| Sr(NO3)2| White precipitate on top| White cloudy solution with some white precipitate| Faint white cloudy foggy precipitate| Little amounts of tiny white precipitate| Unknown (E) | No reaction | White film on top| No reaction| No reaction| .Unknown Alkaline Earth: Mg(NO3)2 Reaction between Halogens and Halides | NaBr| NaCl| NaI| Unknown (E)| Bromine water| Light faint yellow| Golden yell ow| Faint yellow tint| Light faint yellow| Chlorine water| Dark yellow amber | Colorless| Light yellow| Dark yellow amber| Iodine water| Light yellow tint| Dark red color| Light yellow| Light yellow tint| Unknown Halogen: NaBr Color of Halogens in solution | Br2| Cl2| I2| Water| Orangey-Brown| Colorless| Brown| HEP| Orange| Colorless| Purple | Conclusion:

Monday, January 6, 2020

The Elements Of Human Communication - 849 Words

Everyday people converse with one another, and the ways we communicate are dependent on the elements of human communication. Recently I had a conversation with one of my friends about our future academic lives, and without the elements of human communication there would have been no communal transaction between the two of us. The elements of human communication: context, source-receiver, messages, channels, noise, and effects are a necessity in communication for there to be any transaction of information. The communication context during a conversation can be observed in four different dimensions: physical, social-psychological, temporal, and cultural. Physical is the tangible part of a conversation. The social-psychological part of the conversation would include the status relationship. The temporal is the setting for example to time of the day affect upon a conversation. The last one is how culture would influence a conversation and this happens when people of different beliefs communicate. â€Å"These four dimensions of context interact with one another† (DeVito, 8). For instance, during my conversation my friend arrived at the time (temporal context) she said she was going to because that is what is appropriate to do in our culture (cultural context), and due to us being such close friends (social-psychological) our body language remained laid back and calm (physical context). Different communication messages are sent and received through different sensory organs. ForShow MoreRelatedCommunication is the one key element of life that sets human beings apart from the rest of the800 Words   |  4 PagesCommunication is the one key element of life that sets human beings apart from the rest of the animal kingdom. The human ability to communicate at a very refined standard has enabled us to build civilizations and to develop advanced technologies. Technology has undoubtedly advanced throughout the years and with particular groundbreaking inventions such as the Internet, smartphones and tablets our ability to effectively communicate in a formal and detailed manner has deteriorated. The means of communicatingRead MoreCommunication Theory Has A Long History Of Attempting To1069 Words   |  5 PagesCommunication theory has a long history of attempting to provide an understanding of the fundamentals of human communication. Several theories have emerged, but all ha ve proven to be contentious, one of the most notable is Shannon and Weaver’s Transmission Model. This essay will begin by discussing how Daniel Chandler’s (1994) The Transmission Model of Communication outlines the core concepts of the model and how it fails to provide an adequate theory of communication. It will then outline the keyRead MoreThe Ideas About Human Communication784 Words   |  4 PagesChalita Brown 1/17/2016 COMM330: Elements of Persuasion How are the ideas about human communication related to the definition of persuasion? Persuasion can be very complex to define and/or understand. Essentially by writing this paper, I am attempting to persuade my professor that I understand persuasion and how it relates to human communication. People use persuasion every day whether they realize it or not. It can be negative and attempt to manipulate or deceive. It can also be positive and comeRead MoreThe Transmission Model Of Communication990 Words   |  4 PagesCommunication theory has a long history of endeavouring to provide an understanding of the fundamentals of human interaction. Several theories have been developed, but one of the most notable is Claude Shannon and Warren Weaver’s Transmission Model. This essay will discuss how Chandler’s (1994) The Transmission Model of Communication outlines the core concepts of the model, it will then summarise the key elements of the model, before lastly discussing ‘the real world’ implications of the model. ThisRead MoreCommunication in Shat tered Glass Essay1190 Words   |  5 Pages1.) What is communication according to you? Discuss various elements of communication and use scenes or aspects from the motion picture to illustrate your view. Communication, by my own means, is a way to for two or more people to interact or influence each other. It is a way of discovering our world without having to travel kilometres or spending millions. Communication is the single most important aspect in our human society, that without it, the chances of survival are finite. There are aboutRead MoreNonverbal Communication : The Method Of Encoding And Decoding1108 Words   |  5 PagesNonverbal communication consists of the method of encoding and decoding. Encoding is the act of producing the communication using gestures, facial expressions, and posture. Decoding is the process of receiving the information and how the individual processes that information based on their previous experiences. Culture plays a significant role that helps the way learning activities are organized. Nonverbal communication consists of visual cues such as kinesics, proxemics, paralanguage, and hapticsRead MoreCultural Identity. Humans Have Thrived In Their Outlined930 Words   |  4 PagesCultural Identity Humans have thrived in their outlined structure of society and communicate with different cultures in a variety levels, ways, and ideas. Communication between cultures is shaped its values, beliefs, and behaviors. These components characterize an array of individuals, with determinate factors that affect how they communicate. The United States cultural components of values, beliefs, and behavior, affect how I communicate with unfamiliar cultures in a variety of ways. The UnitedRead MoreAnalysis Of Project Management Process Group1599 Words   |  7 Pagesthese processes work in conjunction to make up the whole Project Management Plan. The risks associated with not properly addressing the key elements will ultimately result in the project failing. The PMBOK lists 9 key elements of a project plan. In this section, we will look at the associated risks if the project manager fails to address any of these. Key Element 1 – Scope. The most common risk associated here is scope creep, or the continued addition of new aspects to the scope. Scope creep can comeRead MoreQuestions On The Human Resources Administration1306 Words   |  6 PagesIntroduction The Human Resources Administration needs to integrate the behavior of their employees to avoid chaos and maintain a balance and order within themselves, as well as the functionality and structure of the organization, the importance of formalized guidelines which direct the action of thought and resolutions of common problems related to the objectives of the organization. Therefore it is essential to establish some guidelines that govern the rights and duties between employers and workersRead MoreBarriers to Effective Communication Essay1046 Words   |  5 Pagesb Barriers to Effective Communication University of Phoenix CJA/304 Barriers to Effective Communication Effective communication is a complex phenomenon that involves the verbal and nonverbal components in their cooperation. The main target of communicational process is transmission of information when the sending party wants the recipient to decode the message in the same way as it is coded. Nevertheless, the communicational process consists of the various components that may become the